Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762380

RESUMO

Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.


Assuntos
Arabidopsis , Rodopseudomonas , Humanos , Cofator PQQ , Transtornos do Crescimento , Fósforo
2.
Nutrients ; 15(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37432325

RESUMO

BACKGROUND: Human endothelial progenitor cells (hEPCs), originating from hemangioblasts in bone marrow (BM), migrate into the blood circulation, differentiate into endothelial cells, and could act as an alternative tool for tissue regeneration. In addition, trimethylamine-N-oxide (TMAO), one of the gut microbiota metabolites, has been identified as an atherosclerosis risk factor. However, the deleterious effects of TMAO on the neovascularization of hEPCs have not been studied yet. RESULTS: Our results demonstrated that TMAO dose-dependently impaired human stem cell factor (SCF)-mediated neovascularization in hEPCs. The action of TMAO was through the inactivation of Akt/endothelial nitric oxide synthase (eNOS), MAPK/ERK signaling pathways, and an upregulation of microRNA (miR)-221. Docosahexaenoic acid (DHA) could effectively inhibit the cellular miR-221 level and induce the phosphorylation level of Akt/eNOS, MAPK/ERK signaling molecules, and neovascularization in hEPCs. DHA enhanced cellular amounts of reduced form glutathione (GSH) through an increased expression of the gamma-glutamylcysteine synthetase (γ-GCS) protein. CONCLUSIONS: TMAO could significantly inhibit SCF-mediated neovascularization, in part in association with an upregulation of miR-221 level, inactivation of Akt/eNOS and MAPK/ERK cascades, suppression of γ-GCS protein, and decreased levels of GSH and GSH/GSSG ratio. Furthermore, the DHA could alleviate the detrimental effects of TMAO and induce neovasculogenesis through suppression of miR-221 level, activation of Akt/eNOS and MAPK/ERK signaling cascades, increased expression of γ-GCS protein, and increment of cellular GSH level and GSH/GSSG ratio in hEPCs.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Humanos , Ácidos Docosa-Hexaenoicos , Dissulfeto de Glutationa , Proteínas Proto-Oncogênicas c-akt , Neovascularização Patológica , Óxidos , MicroRNAs/genética
3.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445823

RESUMO

Rheumatoid arthritis (RA), a chronic inflammatory disease, carries a significant burden of atherosclerotic cardiovascular diseases (ASCVD). With their heterogeneous composition, high-density lipoprotein (HDL) particles have varied athero-protective properties, and some may even increase ASCVD risk. In this prospective and cross-sectional study, we aimed to examine the relationship between HDL sizes/metabolites and inflammation in RA. Using 1H-NMR-based lipid/metabolomics, differential HDL-related metabolites were identified between RA patients and healthy control (HC) subjects and between RA patients with and without anti-citrullinated peptide antibodies (ACPA). The correlation between the discriminative HDL-related metabolites and C-reactive protein (CRP) was evaluated in RA patients. RA patients demonstrated higher particle number, lipids, cholesterol, cholesterol ester, free cholesterol, and phospholipids in large/very large-sized HDLs. ACPA-positive patients had higher L-HDL-C and L-HDL-CE but lower small-/medium-sized HDL-TG levels than ACPA-negative patients. An inverse correlation was found between CRP levels and small-sized HDLs. Janus kinase inhibitor treatment was associated with increased serum small-sized HDL-related metabolites and decreased CRP levels. We are the first to reveal the significant associations between RA inflammation and HDL sizes/metabolites. A potential link between ACPA positivity and changes in serum levels of HDL-related metabolites was also observed in RA patients.


Assuntos
Artrite Reumatoide , Inflamação , Humanos , HDL-Colesterol , Estudos Transversais , Estudos Prospectivos , Inflamação/complicações , Artrite Reumatoide/metabolismo , Colesterol , Lipoproteínas HDL
4.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240447

RESUMO

Methionine adenosyl transferases (MATs) catalyze the synthesis of the biological methyl donor adenosylmethionine (SAM). Dysregulation of MATs has been associated with carcinogenesis in humans. We previously found that downregulation of the MAT1A gene enriches the protein-associated translation process and worsens liver hepatocellular carcinoma (LIHC) prognosis. We also discovered that subcellular localization of the MAT2A protein has independently prognostic relevance in breast cancer patients. The present study aimed to examined the clinical relevance of MAT2A translocation in human LIHC. Essential methionine cycle gene expressions in TCGA LIHC datasets were analyzed using Gene Expression Profiling Interactive Analysis 2 (GEPIA2). The protein expression pattern of MAT2A was determined in the tissue array of our own LIHC cohort (n = 261) using immuno-histochemistry, and the prognostic relevance of MAT2A protein's subcellular localization expression was examined using Kaplan-Meier survival curves. LIHC patients with higher MAT2A mRNA expression had a worse survival rate (p = 0.0083). MAT2A protein immunoreactivity was observed in both cytoplasm and nucleus fractions in the tissue array. Tumor tissues had elevated MAT2A protein expression in both cytoplasm and nucleus compared to their adjacent normal tissues. A higher cytoplasmic to nuclear MAT2A protein expression ratio (C/N) was found in female LIHC patients compared to that of male patients (p = 0.047). Kaplan-Meier survival curves showed that a lower MAT2A C/N correlated with poor overall survival in female LIHC patients (10-year survival rate: 29.2% vs. 68.8%, C/N ≤ 1.0 vs. C/N > 1.0, log-rank p = 0.004). Moreover, we found that specificity protein 1 (SP1) may have a potential interaction with nuclear MAT2A protein, using protein-protein interaction; this we found using the GeneMANIA algorithm. We explored the possible protective effects of the estrogen axis in LIHC using the Human Protein Atlas (HPA), and found evidence supporting a possible protective effect of estrogen-related protein ESSRG in LIHC. The localization of SP1 and MAT2 appeared to be inversely associated with ESRRG expression in LIHC. The present study demonstrated the translocation of MAT2A and its prognostic relevance in female LIHC patients. Our findings suggest the potential of estrogen in SP1 regulation and localization of MAT2A, as therapeutic modalities against in female LIHC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Prognóstico , S-Adenosilmetionina/metabolismo , Transferases , Metionina Adenosiltransferase/metabolismo
5.
Microorganisms ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838218

RESUMO

We report the mixotrophic growth of Escherichia coli based on recombinant 2-oxoglutarate:ferredoxin oxidoreductase (OGOR) to assimilate CO2 using malate as an auxiliary carbon source and hydrogen as an energy source. We employ a long-term (~184 days) two-stage adaptive evolution to convert heterotrophic E. coli into mixotrophic E. coli. In the first stage of evolution with serine, diauxic growth emerges as a prominent feature. At the end of the second stage of evolution with malate, the strain exhibits mixotrophy with CO2 as an essential substrate for growth. We expect this work will open new possibilities in the utilization of OGOR for microbial CO2 assimilation and future hydrogen-based electro-microbial conversion.

6.
Sci Rep ; 13(1): 1292, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690679

RESUMO

Human metallothionein-2A (MT2A) protein participates in metal homeostasis, detoxification, oxidative stress reduction, and immune defense. It decreases heavy metal ions and reactive oxygen species (ROS) during injury of cells and tissues. The single nucleotide polymorphisms at the MT2A gene have been associated in various human diseases including cancer. The current study aimed to elucidate associations between MT2A genotypes with the clinical, biochemical, and molecular characteristics that potentially related to lowered MT2A ex-pression. One hundred and forty-one healthy Taiwanese subjects were enrolled from Changhua Show-Chwan Memorial Hospital. Clinical, biochemical and molecular characteristics including the frequent minor allele SNPs, rs28366003 and rs10636, within the MT2A gene were determined. The genotype distribution of MT2A rs10636 fits the Hardy-Weinberg equilibrium. The significant associations with gradually decline of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were identified with MT2A rs10636 and rs28366003 using analysis of variance (ANOVA) with Tukey's analysis as a post hoc test. We further validated the correlations between the expressions of genes in erythropoiesis, cholesterol synthesis, platelet synthesis, insulin with MT2A using the web-based Gene Expression Profiling Interactive Analysis (GEPIA) databases. The results revealed that hypoxia-inducible factor 1α (HIF-1α), erythropoietin (EPO), lipoprotein lipase (LPL), and lecithin-cholesterol acyltransferase (LCAT) mRNA ex-pression are significantly correlated with MT2A mRNA expression. In conclusion, these results suggested that genetic variations of MT2A rs10636 and rs28366003 might be an important risk factor for erythropoiesis in the Taiwanese general population.


Assuntos
Índices de Eritrócitos , Eritropoese , Metalotioneína , Humanos , Alelos , Genótipo , Metalotioneína/genética , Metais Pesados/metabolismo , Polimorfismo de Nucleotídeo Único , Taiwan
7.
Clin Exp Rheumatol ; 41(5): 1120-1128, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36200949

RESUMO

OBJECTIVES: Although 1H-nuclear magnetic resonance (NMR)-based lipid/metabolomics has been used to detect atherosclerosis, data regarding lipid/metabolomic signature in rheumatoid arthritis (RA)-related atherosclerosis are scarce. We aimed to identify the distinct lipid/metabolomic profiling and develop a prediction score model for RA patients with subclinical atherosclerosis (SA). METHODS: Serum levels of lipid metabolites were determined using 1H-NMR-based lipid/metabolomics in 65 RA patients and 12 healthy controls (HCs). The occurrence of SA was defined as the presence of carotid plaques revealed in ultrasound images. RESULTS: Compared with HC, RA patients had significantly higher levels of phenylalanine and glycoprotein acetyls (GlycA) and lower levels of leucine and isoleucine. RA patients with SA had significantly higher levels of phenylalanine, creatinine, and glycolysis_total and lower levels of total lipid in HDL(HDL_L) than RA patients without SA. The Lasso logistic regression analysis revealed that age, creatinine, HDL_L, and glycolysis_total were significant predictors for the presence of SA. The prediction scoring algorithm was built as ( -0.657 + 0.011*Age + 0.004*Creatinine -0.120*HDL_L + 0.056*glycolysis-related measures), with AUC 0.90, sensitivity 83.3%, and specificity 87.2%. Serum phenylalanine levels were significantly decreased, and the levels of HDL_L and HDL_Particle were significantly increased in 20 RA patients, paralleling the decrease in disease activity score for 28-joints. CONCLUSIONS: With 1H-NMR-based lipid/metabolomics, distinct profiling of lipid metabolites was identified between RA patients and HC or between RA patients with and without SA. We further developed a scoring model based on lipid/metabolomics profiling for predicting RA-associated SA.


Assuntos
Artrite Reumatoide , Aterosclerose , Humanos , Recém-Nascido , Creatinina , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico , Metabolômica/métodos , Aterosclerose/diagnóstico , Aterosclerose/etiologia , Lipídeos
8.
J Nutr Biochem ; 109: 109102, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817244

RESUMO

Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is a novel coronavirus that infects many types of cells and causes cytokine storms, excessive inflammation, acute respiratory distress to induce failure of respiratory system and other critical organs. In this study, our results showed that trimethylamine-N-oxide (TMAO), a metabolite generated by gut microbiota, acts as a regulatory mediator to enhance the inerleukin-6 (IL-6) cytokine production and the infection of human endothelial progenitor cells (hEPCs) by SARS-CoV-2. Treatment of N-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) could effectively block the entry of SARS-CoV-2 in hEPCs. The anti-infection effects of N-3 PUFAs were associated with the inactivation of NF-κB signaling pathway, a decreased expression of the entry receptor angiotensin-converting enzyme 2 (ACE2) and downstream transmembrane serine protease 2 in hEPCs upon the stimulation of TMAO. Treatment of DHA and EPA further effectively inhibited TMAO-mediated expression of IL-6 protein, probably through an inactivation of MAPK/p38/JNK signaling cascades and a downregulation of microRNA (miR)-221 in hEPCs. In conclusion, N-3 PUFAs such as DHA and EPA could effectively act as preventive agents to block the infection of SARS-CoV-2 and IL-6 cytokine production in hEPCs upon the stimulation of TMAO.


Assuntos
COVID-19 , Células Progenitoras Endoteliais , Ácidos Graxos Ômega-3 , MicroRNAs , Enzima de Conversão de Angiotensina 2 , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células Progenitoras Endoteliais/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Humanos , Interleucina-6 , Metilaminas , NF-kappa B , Óxidos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Serina Endopeptidases
9.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409009

RESUMO

Given the popularity of ketogenic diets, their potential long-term consequences deserve to be more carefully monitored. Mitochondrially derived formate has a critical role in mammalian one-carbon (1C) metabolism and development. The glycine cleavage system (GCS) accounts for another substantial source for mitochondrially derived 1C units. OBJECTIVE: We investigated how the ketogenic state modulates mitochondrial formate generation and partitioning of 1C metabolic fluxes. DESIGN: HepG2 cells treated with physiological doses (1 mM and 10 mM) of ß-hydroxybutyrate (ßHB) were utilized as the in vitro ketogenic model. Eight-week male C57BL/6JNarl mice received either a medium-chain fatty-acid-enriched ketogenic diet (MCT-KD) or a control diet AIN 93M for 8 weeks. Stable isotopic labeling experiments were conducted. RESULTS AND CONCLUSIONS: MCT-KD is effective in weight and fat loss. Deoxythymidine (dTMP) synthesis from the mitochondrial GCS-derived formate was significantly suppressed by ßHB and consumption of MCT-KD. Consistently, plasma formate concentrations, as well as the metabolic fluxes from serine and glycine, were suppressed by MCT-KD. MCT-KD also decreased the fractional contribution of mitochondrially derived formate in methionine synthesis from serine. With the worldwide application, people and medical professionals should be more aware of the potential metabolic perturbations when practicing a long-term ketogenic diet.


Assuntos
Dieta Cetogênica , Ácido 3-Hidroxibutírico/metabolismo , Animais , Carbono/metabolismo , Dieta Cetogênica/métodos , Humanos , Corpos Cetônicos/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Serina/metabolismo , Triglicerídeos/metabolismo
10.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008908

RESUMO

The major biological methyl donor, S-adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA). There was no mutation found in MAT1A or GNMT RNA in the 42 HCC patients. The 11,799 genes were annotated in the RNA-Seq data, and their expression levels were used to investigate the phenotypes of low MAT1A and low GNMT by Gene Set Enrichment Analysis (GSEA). The REACTOME_TRANSLATION gene set was enriched and visualized in a heatmap along with corresponding differences in gene expression between low MAT1A versus high MAT1A and low GNMT versus high GNMT. We identified 43 genes of the REACTOME_TRANSLATION gene set that are powerful prognosis factors in HCC. The significantly predicted genes were referred into eukaryotic translation initiation (EIF3B, EIF3K), eukaryotic translation elongation (EEF1D), and ribosomal proteins (RPs). Cell models expressing various MAT1A and GNMT proved that simultaneous restoring the expression of MAT1A and GNMT decreased cell proliferation, invasion, as well as the REACTOME_TRANSLATION gene EEF1D, consistent with a better prognosis in human HCC. We demonstrated new findings that downregulation or defect in MAT1A and GNMT genes can enrich the protein-associated translation process that may account for poor HCC prognosis. This is the first study demonstrated that MAT1A and GNMT, the 2 key enzymes involved in methionine cycle, could attenuate the function of ribosome translation. We propose a potential novel mechanism by which the diminished GNMT and MAT1A expression may confer poor prognosis for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glicina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Metionina Adenosiltransferase/genética , Metionina/metabolismo , Biossíntese de Proteínas , Sequência de Bases , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Glicina N-Metiltransferase/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Metionina Adenosiltransferase/metabolismo , Invasividade Neoplásica , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/genética , Análise de Sobrevida
11.
Antioxidants (Basel) ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34829591

RESUMO

Treatment of pancreatic cancer by inhibiting the aberrant activation of the survival signaling pathways has received considerable attention. We investigated the probable action of DHA on the suppression of cell proliferation in human pancreatic ductal adenocarcinoma (PDAC) cells. Our results demonstrated that DHA dose-dependently inhibited cell proliferation through an induction of cell cycle arrest in human PDAC cells. DHA suppressed the expression of phosphorylated-Rb (p-Rb), cyclin D1, cyclin E, cyclin A, E2F1 and c-Myc proteins. Blocking the activation of STAT3 signaling pathway led to an inactivation of CAMKII and increased phosphorylation of c-Myc (T58) protein accompanied with decreased expression of c-Myc protein. Treatment of DHA effectively inhibited cell survival through decreased phosphorylation levels of EGFR, STAT3 and CAMKII proteins. The mechanisms of action were associated with increased phosphorylation levels of c-Myc (T58) and instability of c-Myc proteins. DHA inhibited cell survival through an increased GSSG/GSH ratio and oxidative stress level in HPAF-II cells. DHA induced cell apoptosis through increased expression of Bax, c-caspase 3 and c-PARP proteins in HPAF-II cells. Moreover, treatment of DHA significantly inhibited nucleotide synthesis. In conclusion, DHA might significantly suppress the proliferation of PDAC cells and therefore have potential as an anti-cancer therapeutic agent.

12.
Biotechnol Biofuels ; 14(1): 200, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645498

RESUMO

BACKGROUND: Isobutanol is considered a potential biofuel, thanks to its high-energy content and octane value, limited water solubility, and compatibility with gasoline. As its biosynthesis pathway is known, a microorganism, such as Saccharomyces cerevisiae, that inherently produces isobutanol, can serve as a good engineering host. Isobutanol's toxicity, however, is a major obstacle for bioproduction. This study is to understand how yeast tolerates isobutanol. RESULTS: A S. cerevisiae gene-deletion library with 5006 mutants was used to screen genes related to isobutanol tolerance. Image recognition was efficiently used for high-throughput screening via colony size on solid media. In enrichment analysis of the 161 isobutanol-sensitive clones identified, more genes than expected were mapped to tryptophan biosynthesis, ubiquitination, and the pentose phosphate pathway (PPP). Interestingly, adding exogenous tryptophan enabled both tryptophan biosynthesis and PPP mutant strains to overcome the stress. In transcriptomic analysis, cluster analysis of differentially expressed genes revealed the relationship between tryptophan and isobutanol stress through some specific cellular functions, such as biosynthesis and transportation of amino acids, PPP, tryptophan metabolism, nicotinate/nicotinamide metabolism (e.g., nicotinamide adenine dinucleotide biosynthesis), and fatty acid metabolism. CONCLUSIONS: The importance of tryptophan in yeast's tolerance to isobutanol was confirmed by the recovery of isobutanol tolerance in defective strains by adding exogenous tryptophan to the growth medium. Transcriptomic analysis showed that amino acid biosynthesis- and transportation-related genes in a tryptophan biosynthesis-defective host were up-regulated under conditions similar to nitrogen starvation. This may explain why ubiquitination was required for the protein turnover. PPP metabolites may serve as precursors and cofactors in tryptophan biosynthesis to enhance isobutanol tolerance. Furthermore, the tolerance mechanism may also be linked to tryptophan downstream metabolism, including the kynurenine pathway and nicotinamide adenine dinucleotide biosynthesis. Both pathways are responsible for cellular redox balance and anti-oxidative ability. Our study highlights the central role of tryptophan in yeast's isobutanol tolerance and offers new clues for engineering a yeast host with strong isobutanol tolerance.

13.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502300

RESUMO

Folate depletion causes chromosomal instability by increasing DNA strand breakage, uracil misincorporation, and defective repair. Folate mediated one-carbon metabolism has been suggested to play a key role in the carcinogenesis and progression of hepatocellular carcinoma (HCC) through influencing DNA integrity. Methylenetetrahydrofolate reductase (MTHFR) is the enzyme catalyzing the irreversible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate that can control folate cofactor distributions and modulate the partitioning of intracellular one-carbon moieties. The association between MTHFR polymorphisms and HCC risk is inconsistent and remains controversial in populational studies. We aimed to establish an in vitro cell model of liver origin to elucidate the interactions between MTHFR function, folate status, and chromosome stability. In the present study, we (1) examined MTHFR expression in HCC patients; (2) established cell models of liver origin with stabilized inhibition of MTHFR using small hairpin RNA delivered by a lentiviral vector, and (3) investigated the impacts of reduced MTHFR and folate status on cell cycle, methyl group homeostasis, nucleotide biosynthesis, and DNA stability, all of which are pathways involved in DNA integrity and repair and are critical in human tumorigenesis. By analyzing the TCGA/GTEx datasets available within GEPIA2, we discovered that HCC cancer patients with higher MTHFR had a worse survival rate. The shRNA of MTHFR (shMTHFR) resulted in decreased MTHFR gene expression, MTHFR protein, and enzymatic activity in human hepatoma cell HepG2. shMTHFR tended to decrease intracellular S-adenosylmethionine (SAM) contents but folate depletion similarly decreased SAM in wildtype (WT), negative control (Neg), and shMTHFR cells, indicating that in cells of liver origin, shMTHFR does not exacerbate the methyl group supply in folate depletion. shMTHFR caused cell accumulations in the G2/M, and cell population in the G2/M was inversely correlated with MTHFR gene level (r = -0.81, p < 0.0001), MTHFR protein expression (r = -0.8; p = 0.01), and MTHFR enzyme activity (r = -0.842; p = 0.005). Folate depletion resulted in G2/M cell cycle arrest in WT and Neg but not in shMTHFR cells, indicating that shMTHFR does not exacerbate folate depletion-induced G2/M cell cycle arrest. In addition, shMTHFR promoted the expression and translocation of nuclei thymidine synthetic enzyme complex SHMT1/DHFR/TYMS and assisted folate-dependent de novo nucleotide biosynthesis under folate restriction. Finally, shMTHFR promoted nuclear MLH1/p53 expression under folate deficiency and further reduced micronuclei formation and DNA uracil misincorporation under folate deficiency. In conclusion, shMTHFR in HepG2 induces cell cycle arrest in G2/M that may promote nucleotide supply and assist cell defense against folate depletion-induced chromosome segregation and uracil misincorporation in the DNA. This study provided insight into the significant impact of MTHFR function on chromosome stability of hepatic tissues. Data from the present study may shed light on the potential regulatory mechanism by which MTHFR modulates the risk for hepatic malignancies.


Assuntos
Carcinoma Hepatocelular/patologia , Segregação de Cromossomos , DNA de Neoplasias/genética , Ácido Fólico/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/antagonistas & inibidores , Uracila/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Instabilidade Cromossômica , DNA de Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Polimorfismo Genético , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
14.
Microorganisms ; 9(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34442782

RESUMO

Plant endophytic bacteria live inside host plants, can be isolated from surface-sterilized plant tissues, and are non-pathogenic. These bacteria can assist host plants in obtaining more nutrients and can improve plant growth via multiple mechanisms. Certain Gram-negative Burkholderia species, including rhizobacteria, bioremediators, and biocontrol strains, have been recognized for their plant-growth-promoting abilities, while other isolates have been identified as opportunistic plant or human pathogens. In this study, we observed the auxin production, siderophore synthesis, and phosphate solubilization abilities of B. seminalis strain 869T2. Our results demonstrated that strain 869T2 promoted growth in Arabidopsis, ching chiang pak choi, pak choi, loose-leaf lettuce, romaine lettuce, red leaf lettuce, and Chinese amaranth. Leafy vegetables inoculated with strain 869T2 were larger, heavier, and had more and larger leaves and longer and heavier roots than mock-inoculated plants. Furthermore, inoculations of strain 869T2 into hot pepper caused increased flower and fruit production, and a higher percentage of fruits turned red. Inoculation of strain 869T2 into okra plants resulted in earlier flowering and increased fruit weight. In conclusion, the plant endophytic bacterium Burkholderia seminalis 869T2 exerted positive effects on growth and production in several plant species.

15.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065390

RESUMO

(1) Background: methionine cycle is not only essential for cancer cell proliferation but is also critical for metabolic reprogramming, a cancer hallmark. Hepatic and extrahepatic tissues methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A that catalyze the formation of S-adenosylmethionine (SAM), the principal biological methyl donor. Glycine N-methyltransferase (GNMT) further utilizes SAM for sarcosine formation, thus it regulates the ratio of SAM:S-adenosylhomocysteine (SAH). (2) Methods: by analyzing the TCGA/GTEx datasets available within GEPIA2, we discovered that breast cancer patients with higher MAT2A had worse survival rate (p = 0.0057). Protein expression pattern of MAT1AA, MAT2A and GNMT were investigated in the tissue microarray in our own cohort (n = 252) by immunohistochemistry. MAT2A C/N expression ratio and cell invasion activity were further investigated in a panel of breast cancer cell lines. (3) Results: GNMT and MAT1A were detected in the cytoplasm, whereas MAT2A showed both cytoplasmic and nuclear immunoreactivity. Neither GNMT nor MAT1A protein expression was associated with patient survival rate in our cohort. Kaplan-Meier survival curves showed that a higher cytoplasmic/nuclear (C/N) MAT2A protein expression ratio correlated with poor overall survival (5 year survival rate: 93.7% vs. 83.3%, C/N ratio ≥ 1.0 vs. C/N ratio < 1.0, log-rank p = 0.004). Accordingly, a MAT2A C/N expression ratio ≥ 1.0 was determined as an independent risk factor by Cox regression analysis (hazard ratio = 2.771, p = 0.018, n = 252). In vitro studies found that breast cancer cell lines with a higher MAT2A C/N ratio were more invasive. (4) Conclusions: the subcellular localization of MAT2A may affect its functions, and elevated MAT2A C/N ratio in breast cancer cells is associated with increased invasiveness. MAT2A C/N expression ratio determined by IHC staining could serve as a novel independent prognostic marker for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Metionina Adenosiltransferase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Proliferação de Células/fisiologia , Feminino , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Metionina/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica/patologia , Prognóstico
16.
PLoS One ; 16(3): e0247550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730072

RESUMO

Human pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer type with a very high mortality rate. Inflammatory cytokine such as tumor necrosis factor- alpha (TNF-α) plays a pivotal role in the progression of PDAC. Recently, suppression of cell invasion by preventive agents has received considerable attention in the prevention of metastatic tumors. Several clinical studies suggested that natural forms or analogues of fat-soluble vitamins such as vitamin A and vitamin D can work as anti-cancer agents to inhibit the development of cancer. In this study, our results demonstrated that co-treatment of 13-cis retinoic acid (13-cis RA) and 1,25-dihydroxyvitamin D3 (1,25-VD3) significantly inhibited TNF-α mediated cell invasion in PDAC in vitro. Cotreatment of 13-cis RA and 1,25-VD3 also inhibited TNF-α mediated expression of matrix metalloproteinase-9 (MMP-9) protein through blocking c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) signaling pathways. Our results demonstrated that treatment of TNF-α lead to a decreased expression of tissue inhibitor of metalloproteinase- 3 (TIMP-3) protein and an induction of MMP-9 protein and cell invasion through an upregulation of microRNA-221 (miR-221) in human PDAC cells. Moreover, treatment of SP600125 (a specific inhibitor of JNK pathway) or cotreatment of 13-cis RA and 1,25-VD3 significantly induced a decreased expression of miR-221 and an increased expression of TIMP-3 protein. These results suggest that 13-cis RA and 1,25-VD3 significantly suppress TNF-α mediated cell invasion and therefore potentially act as preventive agents against PDAC.


Assuntos
Adenocarcinoma/metabolismo , Calcitriol/farmacologia , Movimento Celular/efeitos dos fármacos , Isotretinoína/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adenocarcinoma/patologia , Antracenos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , NF-kappa B/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Transfecção , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572934

RESUMO

(1) Background: Antifolate methotrexate (MTX) is the most common disease-modifying antirheumatic drug (DMARD) for treating human rheumatoid arthritis (RA). The mitochondrial-produced formate is essential for folate-mediated one carbon (1C) metabolism. The impacts of MTX on formate homeostasis in unknown, and rigorously controlled kinetic studies can greatly help in this regard. (2) Methods: Combining animal model (8-week old female C57BL/6JNarl mice, n = 18), cell models, stable isotopic tracer studies with gas chromatography/mass spectrometry (GC/MS) platforms, we systematically investigated how MTX interferes with the partitioning of mitochondrial and cytosolic formate metabolism. (3) Results: MTX significantly reduced de novo deoxythymidylate (dTMP) and methionine biosyntheses from mitochondrial-derived formate in cells, mouse liver, and bone marrow, supporting our postulation that MTX depletes mitochondrial 1C supply. Furthermore, MTX inhibited formate generation from mitochondria glycine cleavage system (GCS) both in vitro and in vivo. Folinate selectively rescued 1C metabolic pathways in a tissue-, cellular compartment-, and pathway-specific manner: folinate effectively reversed the inhibition of mitochondrial formate-dependent 1C metabolism in mouse bone marrow (dTMP, methionine, and GCS) and cells (dTMP and GCS) but not methionine synthesis in liver/liver-derived cells. Folinate failed to fully recover hepatic mitochondrial-formate utilization for methionine synthesis, suggesting that the efficacy of clinical folinate rescue in MTX therapy on hepatic methionine metabolism is poor. (4) Conclusion: Conducting studies in mouse and cell models, we demonstrate novel findings that MTX specifically depletes mitochondrial 1C supply that can be ameliorated by folinate supplementation except for hepatic transmethylation. These results imply that clinical use of low-dose MTX may particularly impede 1C metabolism via depletion of mitochondrial formate. The MTX induced systematic and tissue-specific formate depletion needs to be addressed more carefully, and the efficacy of folinate with respect to protecting against such depletion deserves to be evaluated in medical practice.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Formiatos/metabolismo , Leucovorina/uso terapêutico , Metotrexato/uso terapêutico , Complexo Vitamínico B/uso terapêutico , Animais , Antirreumáticos/farmacologia , Artrite Reumatoide/metabolismo , Suplementos Nutricionais , Feminino , Humanos , Leucovorina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metotrexato/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexo Vitamínico B/farmacologia
18.
PLoS One ; 15(11): e0241186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137095

RESUMO

The treatment of cancer cells obtained by blocking cellular metabolism has received a lot of attention recently. Previous studies have demonstrated that Kras mutation-mediated abnormal glucose metabolism would lead to an aberrant cell proliferation in human pancreatic ductal adenocarcinoma (PDAC) cells. Previous literature has suggested that consumption of fish oil is associated with lower risk of pancreatic cancer. In this study, we investigated the anti-cancer effects of docosahexaenoic acid (DHA) in human PDAC cells in vitro and in vivo. Omega-3 polyunsaturated fatty acids (PUFAs) such as DHA and eicosapentaenoic acid (EPA) significantly inhibited the proliferation of human PDAC cells. The actions of DHA were evaluated through an induction of cell cycle arrest at G1 phase and noticed a decreased expression of cyclin A, cyclin E and cyclin B proteins in HPAF-II cells. Moreover, it was found that co-treatment of DHA and gemcitabine (GEM) effectively induced oxidative stress and cell death in HPAF-II cells. Interestingly, DHA leads to an increased oxidative glutathione /reduced glutathione (GSSG/GSH) ratio and induced cell apoptosis in HPAF-II cells. The findings in the study showed that supplementation of GSH or N-Acetyl Cysteine (NAC) could reverse DHA-mediated cell death in HPAF-II cells. Additionally, DHA significantly increased cellular level of cysteine, cellular NADP/NADPH ratio and the expression of cystathionase (CTH) and SLCA11/xCT antiporter proteins in HPAF-II cells. The action of DHA was, in part, associated with the inactivation of STAT3 cascade in HPAF-II cells. Treatment with xCT inhibitors, such as erastin or sulfasalazine (SSZ), inhibited the cell survival ability in DHA-treated HPAF-II cells. DHA also inhibited nucleotide synthesis in HPAF-II cells. It was demonstrated in a mouse-xenograft model that consumption of fish oil significantly inhibited the growth of pancreatic adenocarcinoma and decreased cellular nucleotide level in tumor tissues. Furthermore, fish oil consumption induced an increment of GSSG/GSH ratio, an upregulation of xCT and CTH proteins in tumor tissues. In conclusion, DHA significantly inhibited survival of PDAC cells both in vitro and in vivo through its recently identified novel mode of action, including an increment in the ratio of GSSG/GSH and NADP/NADPH respectively, and promoting reduction in the levels of nucleotide synthesis.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Glutationa/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo
19.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233834

RESUMO

Folate-mediated one-carbon (1C) metabolism is a major target of many therapies in human diseases. Studies have focused on the metabolism of serine 3-carbon as it serves as a major source for 1C units. The serine 3-carbon enters the mitochondria transferred by folate cofactors and eventually converted to formate and serves as a major building block for cytosolic 1C metabolism. Abnormal glycine metabolism has been reported in many human pathological conditions. The mitochondrial glycine cleavage system (GCS) catalyzes glycine degradation to CO2 and ammonium, while tetrahydrofolate (THF) is converted into 5,10-methylene-THF. GCS accounts for a substantial proportion of whole-body glycine flux in humans, yet the particular metabolic route of glycine 2-carbon recycled from GCS during mitochondria glycine decarboxylation in hepatic or bone marrow 1C metabolism is not fully investigated, due to the limited accessibility of human tissues. Labeled glycine at 2-carbon was given to humans and primary cells in previous studies for investigating its incorporations into purines, its interconversion with serine, or the CO2 production in the mitochondria. Less is known on the metabolic fate of the glycine 2-carbon recycled from the GCS; hence, a model system tracing its metabolic fate would help in this regard. We took the direct approach of isotopic labeling to further explore the in vitro and in vivo metabolic fate of the 2-carbon from [2-13C]glycine and [2-13C]serine. As the 2-carbon of glycine and serine is decarboxylated and catabolized via the GCS, the original 13C-labeled 2-carbon is transferred to THF and yield methyleneTHF in the mitochondria. In human hepatoma cell-lines, 2-carbon from glycine was found to be incorporated into deoxythymidine (dTMP, dT + 1), M + 3 species of purines (deoxyadenine, dA and deoxyguanine, dG), and methionine (Met + 1). In healthy mice, incorporation of GCS-derived formate from glycine 2-carbon was found in serine (Ser + 2 via cytosolic serine hydroxy methyl transferase), methionine, dTMP, and methylcytosine (mC + 1) in bone marrow DNA. In these experiments, labeled glycine 2-carbon directly incorporates into Ser + 1, A + 2, and G + 2 (at C2 and C8 of purine) in the cytosol. It is noteworthy that since the serine 3-carbon is unlabeled in these experiments, the isotopic enrichments in dT + 1, Ser + 2, dA + 3, dG + 3, and Met + 1 solely come from the 2-carbon of glycine/serine recycled from GCS, re-enters the cytosolic 1C metabolism as formate, and then being used for cytosolic syntheses of serine, dTMP, purine (M + 3) and methionine. Taken together, we established model systems and successfully traced the metabolic fate of mitochondrial GCS-derived formate from glycine 2-carbon in vitro and in vivo. Nutritional supply significantly alters formate generation from GCS. More GCS-derived formate was used in hepatic serine and methionine syntheses, whereas more GCS-derived formate was used in dTMP synthesis in the bone marrow, indicating that the utilization and partitioning of GCS-derived 1C unit are tissue-specific. These approaches enable better understanding concerning the utilization of 1C moiety generated from mitochondrial GCS that can help to further elucidate the role of GCS in human disease development and progression in future applications. More studies on GCS using these approaches are underway.


Assuntos
Aminoácido Oxirredutases/metabolismo , Formiatos/metabolismo , Glicina/metabolismo , Mitocôndrias/metabolismo , Complexos Multienzimáticos/metabolismo , Serina/metabolismo , Transferases/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
20.
J Clin Med ; 9(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003428

RESUMO

(1) Background: Tumor hypoxia leads to metastasis and certain immune responses, and interferes with normal biological functions. It also affects glucose intake, down-regulates oxidative phosphorylation, and inhibits fatty-acid desaturation regulated by hypoxia-inducible factor 1α (HIF-1α). Although tumor hypoxia has been found to promote tumor metastasis, the roles of HIF-1α-regulated genes and their application are not completely integrated in clinical practice. (2) Methods: We examined the correlation between HIF-1α, metadherin (MTDH), and interleukin (IL)-10 mRNA expression, as well as their expression patterns in the prognosis of breast cancer using the Gene Expression Profiling Interactive Analysis (GEPIA) databases via a web interface; tissue microarrays (TMAs) were stained for MTDH and IL-10 protein expression using immunohistochemistry. (3) Results: HIF-1α, MTDH, and IL-10 mRNA expression are highly correlated and strongly associated with poor prognosis. MTDH and IL-10 protein expression of breast cancer patients usually harbored negative estrogen receptor (ER) or progesterone receptor (PR) status, and late-stage tumors have higher IL-10 expression. With regard to MTDH and IL-10 protein expression status for using univariate and multivariate analysis, the results showed that the protein expression of MTDH and IL-10 in ER-negative or PR-negative breast cancer patients have the worse prognosis. (4) Conclusions: we propose a new insight into hypoxia tumors in the metabolism and immune evidence for breast cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...